

ISO 5011 Test Results

Certified to the ISO 5011 Air Filtration Standard

Cold Air Intake Kit

1994-1997 Ford F250/350 V8-7.3L Diesel

Part Numbers: 75-5027 (Cotton Filter) 75-5027D (Dry Filter)

ISO 5011, Second Edition Performance Testing: Inlet Air Cleaning Equipment for Combustion Engines & Compressors

S&B Filters, Inc. • 787 South Wanamaker Avenue • Ontario, California 91761 • (909) 947-0015 • (909) 947-0603 • www.sbfilters.com

ISO 5011, Second Edition Air Filter or Intake Kit Test Report

The test data presented in the following report represents the restriction of airflow, efficiency and dust loading capacity. The filters tested were procured from various distributors or provided by customers. The tests were performed in accordance with ISO 5011. The following were measured in accordance with the test: (1) Pressure Drop for Clean Element, Initial Efficiency and Dust Loading Capacity. The Flow Rate used to conduct the Dust Loading and Capacity test(s) is listed under the *Average Environmental Conditions and Test Specifications*. PTI ISO Course Test Dust was utilized and the particle data sheet for the batch is attached.

The test sequence begins with measuring the pressure drop of a clean filter as a function of the airflow rate which is measured in cubic feet per minute (CFM). Subsequently, the cumulative efficiency and dust loading capacity are measured. The termination point when measuring for capacity is shown at the bottom of the report under the heading *Termination ^P*. The results of the tests are recorded in the top table and charts shown on the next page. The filters are inspected before and after the tests are performed.

The Top Table demonstrates the results of the testing for up to three (3) samples per filter type (part number). The Efficiency represents the amount of dust (contaminants) that was stopped by the filter during each test. The Capacity measures the dust holding capability of the filter.

During the test, the filter is loaded with dust until it reaches a terminal pressure drop increase of 10 inches of water (28"H2O for Heavy Duty Vehicles) across the filter element (please refer to the Average Environmental Conditions and Test Specifications at the bottom of the next page to verify the pressure drop utilized on this particular test).

The Line Graph shows the pressure drop as a function of the airflow rate for the clean filter(s). The computer controlled test equipment initiates the test at close to zero (0) cubic feet per minute (CFM) and then increases the CFM gradually until the CFM termination point is reached. During the test, the restriction of the filter is measured in inches of water ("H2O) as it relates to the air flow rate (CFM). Visual inspections of filters are performed to insure against dust leakage and manufacturing flaws.

The Bar Graph illustrates the cumulative efficiency for the filter(s) tested.

Definition of Terms & Test Protocol

Restriction

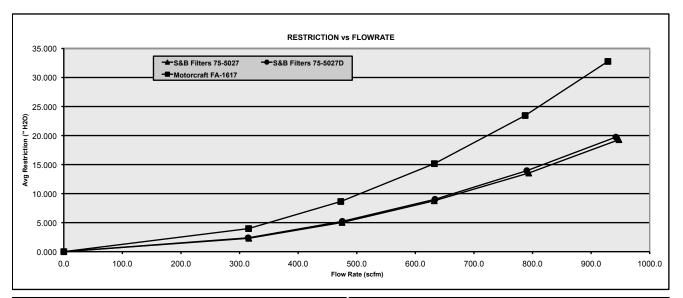
Restriction measures how difficult it is for the air to get through the filter and is measured in inches of H2O. Instead of referring to restriction, the industry uses "air flow" to describe the effect of restriction. They say for example, that a High Performance Filter "flows better" than the OEM paper filter. On a line graph, the lower the restriction of a filter the better the air flow.

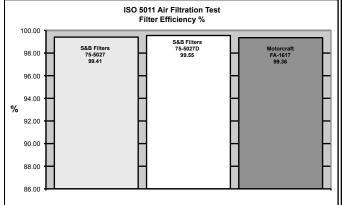
Efficiency

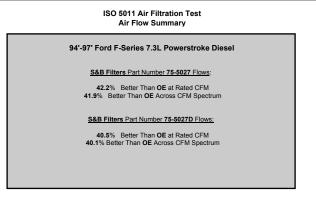
Efficiency is measured in % and is the amount of dirt/contaminants that the filter stops from going into the engine.

Capacity

Capacity is the total amount of contaminants/dirt the filter will hold before reaching its termination point. The termination point is a predefined restriction point that is used as the cut-off point when measuring how much dirt a filter will hold. For typical vehicles, 10"H2O is used at the termination point. For heavy duty trucks, this number is 28"H2O.


Note: Testing was conducted based on the ISO 5011 testing standard; however, variances from the actual test procedures may exist. The intent of the testing is to show comparative test results between various products that are intended for similar use. Tests are conducted under a climate controlled environment; however, changes in temperature and humidity between tests may occur which could alter the actual test results.


1SO 5011Test Results Explanation - Course Test Dust doc


ISO 5011 Air Filtration Standard Intake Kit Comparison

S&B Filters75-5027 Test Number 315

Air Filter Mfg. & Part #	INITIAL RESTRIC. ("H2O)	CAPACITY (grams)	EFFICIENCY (%)	Air Flow scfm	Net Restriction (Inches of H2O)	% Less Restrictive than FA-1617Motorcraft
Filter #1 S&B Filters 75-5027	6.7	176.5	99.41	0.0 315.7 474.9	0.000 2.303 5.025	0.0% 42.1% 41.8%
				632.3 793.5 947.5	8.768 13.542 19.287	42.2% 42.3% 41.1%
Filter #2 S&B Filters 75-5027D	6.8	142.1	99.55	0.0 314.7 475.3	0.000 2.384 5.218	0.0% 40.0% 39.6%
•				633.4 790.2 942.2	9.016 13.948 19.732	40.5% 40.5% 39.8%
Filter #3 Motorcraft FA-1617	14.9	159.1	99.36	0.0 315.4 472.7	0.000 3.975 8.640	
				632.5 787.4 928.6	15.162 23.451 32.769	

AVERAGE ENVIRONMENTAL CONDITIONS & TEST SPECIFICATIONS

Temperature:	70.98	deg F
Relative Humidity:	50.27	%
Baro Pressure:		mmHg
Test Stand:		
Inlet Size:	3.75	inches

Housing:	uni con	
Contaminant:	Coarse	
Contam. Lot #:	5457C	
Dust Feed Rate:	17.67	grams/minute
Rated Flow:	631	cfm

Determination of Gasoline and Diesel Engine Air Consumption

CFM Calculator: Enter Data in Blue Shaded Areas

Engine Displacement (cubic inches) RPM at maximum horse power Cycle Factor: Enter "2" for 4 Cycle Diesel and Gasoline Enter "1" for 2 Cycle Diesel and Gasoline Volumetric Efficiency: Naturally Aspirated Gasoline & Diesel Engines Enter "0.8" Super Charged Diesel Engines Enter "1.30" Turbocharged Diesel Engines Enter "1.75"

Liters	ťΩ	CID	Conv	erter

Liters:	7.3
Cubic Inches:	445.4

Vehicle Information

Model Year	94'-97'
Make	Ford
Model	F-Series
Engine Specs	V8 Diesel

Based on the information entered above, the	
estimated CFM of the vehicle at maximum Horse	
Power is:	631

CYCLE FACTOR	
	Cycle Factor
4 Cycle Diesel and Gasoline Engine	2
2 Cycle Diesel and Gasoline Engine	1

VOLUMETRIC EFFICIENCY	Volumetric Efficiency
	(Approximate)
Naturally Aspirated Gasoline & Diesel Engines	0.8
Supercharged Diesel Engines	1.30
Turbocharged Diesel Engines	1.75
Note: The 1.75 volumetric efficiency is applicable only at top gov	verned engine speed under
full load conditions.	

EQUATION

The following is a method of determining approximated gasoline and diesel engine air flow requirement:

Air Flow (CFM) = $\frac{\text{Displacement (cubic inches)}}{1728}$ x Volumetric Efficiency Cycle Factor

EXAMPLE

Information necessary to calculate air consumption:

Ford F250 7.3L V8 Diesel Truck

4 cycle, 2800 RPM, 445.4 (cubic inches) displacement, turbocharged

Air Flow (CFM): $\underline{445.4}$ x $\underline{2800}$ x 1.75 = 631 CFM $\underline{1728}$ $\underline{2}$

14531 Ewing Avenue South Burnstik, Minnesota 55306 Phone: 952-894-8737

POWDER TECHNOLOGY, INC. -

Filenan e:

5457C.#01

Sample Number:

200

Group D:

5457C

Sample ID:

ISO 12103-1, A4 COARSE TEST DUST

Comment:

SAE COARSE TEST DUST, NIST TRACEABLE

Operator:

LHA

Electro /te: Dispersant: ISOTON II TYPE IC

Aperture Size:

400 µm

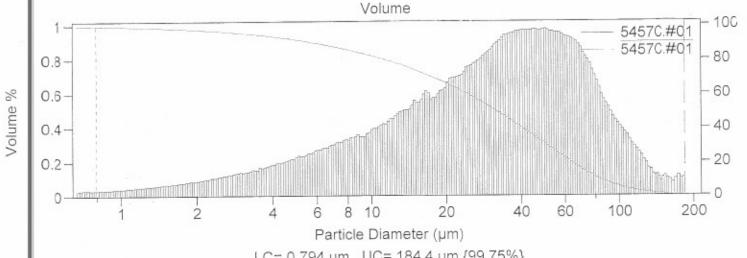
5457d.#01 5457d.#02

200 µm 100 µm

5457d.#03

30 µm

5457d.#04


Acquired:

17:51 4 Apr 2007

Serial i umber:

33

Edited izedata

LC= 0.794 µm UC= 184.4 µm {99.75%} Cumulative Numeric

							Volume	data%
- 1			Volume Sta	atictics (C	Soometric)	5457C.#01	Micron size	less than
- 1			volume Sta	alistics (c	Jeometrio)	04070.#01	1	0.6
0.1		f 0.70	M to 104	1 um			2	2.5
Calcula	ons	from U.78	34 μm to 184.	4 μπ			3	4.5
Volume			4.967e9 µr	n ³			4	6.6
Mean:			25.84 µm		S.D.:	47.4 µm	5	8.6
Median	1225	22 222	31.56 µm		Variance:	2250 µm ²	7	12.7
Mean/M	edia	n Ratio:	0.819				10	18.3
Mode:			49.89 µm				20	34.3
Spec. s	ırf. a	rea:	0.476 m ² /r	nl			40	60.2
0/ -		40	25	E0	75	90	80	89.2
% >		10	25	50	14.15	5.778	120	97.4
Size	μm	82.30	55.98	31.56	14.15	5.770	180	99.9
							200	100.0

MATERIAL SAFETY DATA SHEET

Section 1: Product/Company Information

dentity: Arizona sand including Arizona Road Dust, Arizona Silica, AC Fine and AC Coarse To Dists, SAE Fine and Coarse Test Dusts, 1726 Test Dusts, ISO Ultrafine, ISO Fine, ISO Medium 150 Coarse Test Dusts, MIL STD 810 Blowing Dust.

Mg. Name: Powder Technology Inc.

14331 Ewing Avenue S.

Burnsville, MN 55306

Emergency Number: (952) 894-8737

Number for Info:

(952) 894-8737

Date Updated:

2 March 2006

Section 2: Emergency and First Aid

Eyes:

Immediately flush eye thoroughly with water. Get medical attention if irritable

persists.

Skin:

N/A

Imhalation:

Remove person to fresh air. If breathing is difficult, administer oxygen. If

not breathing, give artificial respiration. Seek medical help if coughing

and other symptoms do not subside.

Ingestion:

Do not induce vorniting. If conscious, have the victim drink plenty of

water and call a physician if discomfort is experienced.

Section 3: Composition Information

Typical chemical composition:

Chemical	CAS Number	Percent of Weight
SiO ₂	14808-60-7	68-76%
Al ₂ O ₃	1344-28-1	10-15%
Fe ₂ O ₃	1309-37-1	2-5%
Na ₂ O	1313-59-3	2-4%
CaO	1305-78-8	2-5%
MgO	1309-48-4	1-2%
TiO ₂	13463-67-7	0.5-1.0%
K ₂ O	12136-45-7	2-5%

Loss on Ignition 2 - 5 %

All components of this material are included on the TSCA Inventory.

Section 8: Fire and Explosion Hazard Data

#/Esh Point: None Lower Explosive Limit: None

Auto ignition Temperature: Not combustible Upper Explosive Limit: None

Filmmable Limits: N/A Special Fire Fighting Procedures: None

Extinguishing Media: Not Combustible Unusual Fire and Explosion Hazards: None

Hazardous Combustion Products: None

Section 9: Stability and Reactivity Data

Stability: Incompatibility (Materials to Avoid):

Hazardous Decomposition: Hazardous Polymerization: Product is stable Strong Acids Will not occur Will not occur

Section 10: Handling and Storage

Handle and store in a manner so that airborne dust does not exceed applicable exposure limits.

Use adequate ventilation and dust collection. Use exposure control and personal protection methods as described in Section 12.

Section 11: Toxicological Information

Conditions aggravated by exposure: Eye disease, Skin disorders and Chronic Respiratory conditions.

Section 12: Exposure Control/Personal Protection

Respiratory Protection: Use local exhaust or general dilution ventilation to control dust

levels below applicable exposure limits. Minimize dispersal of dust into the air. Use appropriate NIOSH approved respiratory protection

for respirable crystalline silica.

Eye Protection: Wear safety glasses with side shields or goggles to avoid contact

with the eyes. In extremely dusty environments and unpredictable environments, wear tight-fitting unvented or indirectly vented goggles

to avoid eye irritation or injury

Page 3 of 4 Arizona Test Dust MSDS

11/14/2006